Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurodegener ; 18(1): 65, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37759260

ABSTRACT

BACKGROUND: RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS: We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS: Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aß pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION: The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.


Subject(s)
Alzheimer Disease , Dendritic Spines , Animals , Mice , Receptors, AMPA , Alzheimer Disease/genetics , Epigenesis, Genetic , Cognition
2.
J Neurosci ; 41(18): 4120-4130, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33888604

ABSTRACT

Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method (TRAP2 mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior.SIGNIFICANCE STATEMENT Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination.


Subject(s)
Learning/physiology , Memory/physiology , Animals , Conditioning, Classical , Dentate Gyrus/physiology , Discrimination, Psychological , Estrogen Antagonists/pharmacology , Fear/psychology , Hippocampus/physiology , Learning/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Models, Psychological , Neurons/physiology , Proto-Oncogene Proteins c-fos/genetics , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
3.
Hippocampus ; 31(7): 790-814, 2021 07.
Article in English | MEDLINE | ID: mdl-33452843

ABSTRACT

The extinction of contextual fear is commonly an essential requirement for successful exposure therapy for fear disorders. However, experimental work on extinction of contextual fear is limited, and there little or no directly relevant theoretical work. Here, we extend BACON, a neurocomputational model of context fear conditioning that provides plausible explanations for a number of aspects of context fear conditioning, to deal with extinction (calling the model BaconX). In this model, contextual representations are formed in the hippocampus and association of fear to them occurs in the amygdala. Representation creation, conditionability, and development of between-session extinction are controlled by degree of confidence (assessed by the Bayesian weight of evidence) that an active contextual representation is in fact that of the current context (i.e., is "valid"). The model predicts that: (1) extinction which persists between sessions will occur only if at a sessions end there is high confidence that the active representation is valid. It follows that the shorter the context placement-to-US (shock) interval ("PSI") and the less is therefore learned about context, the longer extinction sessions must be for enduring extinction to occur, while too short PSIs will preclude successful extinction. (2) Short-PSI deficits can be rescued by contextual exposure even after conditioning has occurred. (3) Learning to discriminate well between a conditioned and similar safe context requires representations of each to form, which may not occur if PSI was too short. (4) Extinction-causing inhibition must be applied downstream of the conditioning locus for reasonable generalization properties to be generated. (5) Context change tends to cause return of extinguished contextual fear. (6). Extinction carried out in the conditioning context generalizes better than extinction executed in contexts to which fear has generalized (as done in exposure therapy). (7) BaconX suggests novel approaches to exposure therapy.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Amygdala/physiology , Bayes Theorem , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/physiology
4.
Curr Biol ; 30(12): 2300-2311.e6, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32442458

ABSTRACT

The context in which sudden fearful events occur can be poorly encoded into memory. Yet, the consequences of the resulting context-impoverished memories remain unknown. We demonstrate that restricting the time available for context encoding during contextual fear conditioning causes maladaptively overgeneralized and inextinguishable fear. However, post-conditioning context exposure enables further context encoding through hippocampal reconsolidation-dependent memory updating. Updating in the conditioning context alleviates overgeneralization and restores capacity for extinction. However, updating in a similar safe context erroneously shifts fear from the dangerous to the safe context. We argue that these phenomena can be explained by uncertainty about where events occurred. Moreover, we show that a hippocampal-neocortical neurocomputational model based on this assumption successfully simulates and explains our observations. These findings reveal that context-impoverished memories are maladaptive and can be improved or distorted after recall, with implications for basic memory theory, memory distortion, and treatment of disorders like post-traumatic stress disorder.


Subject(s)
Extinction, Psychological/physiology , Mental Recall/physiology , Animals , Male , Mice , Mice, Inbred C57BL
5.
Mol Brain ; 13(1): 27, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32102661

ABSTRACT

Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington's disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer's disease.


Subject(s)
CA1 Region, Hippocampal/pathology , Dendritic Spines/metabolism , Learning , Memory Disorders/complications , Neurons/pathology , RNA Editing , Receptors, AMPA/metabolism , Seizures/complications , Animals , Base Sequence , Body Weight , CA1 Region, Hippocampal/physiopathology , Fear , Long-Term Potentiation , Memory Disorders/physiopathology , Mice , Motor Activity , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/physiopathology , Survival Analysis , Synaptic Transmission
6.
Front Neurosci ; 12: 243, 2018.
Article in English | MEDLINE | ID: mdl-29719497

ABSTRACT

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

7.
Learn Mem ; 24(4): 153-157, 2017 04.
Article in English | MEDLINE | ID: mdl-28298553

ABSTRACT

Rodents require a minimal time period to explore a context prior to footshock to display plateau-level context fear at test. To investigate whether this rapid fear plateau reflects complete memory formation within that short time-frame, we used the immediate-early gene product Arc as an indicator of hippocampal context memory formation-related activity. We found that hippocampal Arc expression continued to increase well past the minimal time required for plateau-level fear. This raises the possibility that context fear conditioning occurs more rapidly than complete memory formation. Thus, animals may be able to condition robustly to both complete and incomplete contextual representations.


Subject(s)
Fear , Hippocampus/metabolism , Memory/physiology , AIDS-Related Complex/genetics , AIDS-Related Complex/metabolism , Animals , Conditioning, Classical , Electroshock/adverse effects , Freezing Reaction, Cataleptic/physiology , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Time Factors
8.
Neurobiol Learn Mem ; 105: 40-53, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23850597

ABSTRACT

We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.


Subject(s)
Learning/physiology , Microglia/physiology , Neurodegenerative Diseases/physiopathology , Neuronal Plasticity , Animals , Brain/physiology , Humans , Memory/physiology , Mice , Rats
9.
PLoS One ; 8(4): e59586, 2013.
Article in English | MEDLINE | ID: mdl-23560052

ABSTRACT

Recent human trials of treatments for Alzheimer's disease (AD) have been largely unsuccessful, raising the idea that treatment may need to be started earlier in the disease, well before cognitive symptoms appear. An early marker of AD pathology is therefore needed and it is debated as to whether amyloid-ßAß? plaque load may serve this purpose. We investigated this in the hAPP-J20 AD mouse model by studying disease pathology at 6, 12, 24 and 36 weeks. Using robust stereological methods, we found there is no neuron loss in the hippocampal CA3 region at any age. However loss of neurons from the hippocampal CA1 region begins as early as 12 weeks of age. The extent of neuron loss increases with age, correlating with the number of activated microglia. Gliosis was also present, but plateaued during aging. Increased hyperactivity and spatial memory deficits occurred at 16 and 24 weeks. Meanwhile, the appearance of plaques and oligomeric Aß were essentially the last pathological changes, with significant changes only observed at 36 weeks of age. This is surprising given that the hAPP-J20 AD mouse model is engineered to over-expresses Aß. Our data raises the possibility that plaque load may not be the best marker for early AD and suggests that activated microglia could be a valuable marker to track disease progression.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , CA1 Region, Hippocampal/pathology , Gliosis/pathology , Memory Disorders/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Age Factors , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers/metabolism , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/metabolism , Cell Count , Disease Models, Animal , Early Diagnosis , Gene Expression , Gliosis/diagnosis , Gliosis/genetics , Gliosis/metabolism , Humans , Inflammation , Male , Memory Disorders/diagnosis , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/diagnosis , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Stereotaxic Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...